3.1 Introductior. 83

L]

Before we go on to more formal material, let us examine the attribute Birth_
Date in greater detail. We are all well aware that every date is not a legal date, eg,
January 33, 1959. Furthermore, a future date could not be a valid value for this file.
If we want to restrict the values that can be assigned to some attribute for a given
record, we must define the set of legal values for that attribute. We refer to this set
of legal values as the domain of an attribute.

Until now, we have been informally discussing certain concepts related to data
organization on secondary storage. We shall now set these concepts in more formal
terms.

A file F is a collection or ‘‘bag’’ of records, that is, F = {r, 12 . . ., I},
where the 1;’s are used to represent the records in a file F containing n records. File
F, in general, is not a set of records because duplicate records may be permitted. A
“‘bag’’ permits duplicate occurrences although it may be difficult to visualize many
situations where this would occur.

As discussed earlier, an attribute is used to capture some characteristic or prop-
erty of an entity. A record r; is a set of <attribute (or field), value> pairs defined on
the set of attributes A = {A;;, . . . , Aim} Over the set of corresponding domains
D = {Dy, . . . , Dim}. It is not necessary that D; and Dy, j # k, be distinct
domains, as different attributes can be defined on the same domain.

The record r; can be represented as the set r; = {(4if, Vi), - - -+ (Aim, Vi)}s
where each v; € Dy, forj = 1,. . . , m. If every record of a file contains <attrib-
ute,value> pairs for the same set of attributes, the file is said to contain homoge-
neous records. If the attribute-value pairs are similarly ordered in all the records of
the file, i.e., for all r;, Ay = A2l =... = Anl), A = Ap = . .. A,
o, (Aym = Aam = . . . = Apm), then the fact that the attribute order is known
can be used to achieve efficiency in record representation. It is in fact usual to rep-
resent a record using positional notation, i.e., r; = (Vii, . . ., Vim), Where the
attributes are discerned from the position of the associated value. This is how we
represented a record in Figure 2.15. The order of the attributes has no semantic
importance. For a data record using positional notation to make sense, the mapping
between position and attribute names must be known. Although the attribute name
may not be specifically incorporated in the record, we can logically associate the
appropriate attribute name with the values stored.

Example 3.2 In the above example, the attribute order in each record of the file is given
as Birth_Date, followed by Last_Name and then First_Name. On an access
to a record we are presented with a sequence of bytes that we map, logi-
caily, to our three attributes. The first k bytes represent the Birth_Date, the
succeeding k' bytes the Last_Name, and the remaining k'’ bytes the First_
Name. Given the sequence of bytes, their decoding mechanism, and the
values k, k', and k’’, we can interpret the sequence of bytes that constitutes
the record. W

A file that contains nonhomogeneous records needs to store the attribute names
(or identification codes) within the records.

84 Chapter 3 File Organization

3.1.3 Formal Specification of Storage of a File

All storage organizations are ultimately constituted from bytes. Let us call the set of
all possible bytes BYTES. We can define an attribute value, a record, and a file in
terms of a sequence of bytes. The length of a sequence, s, is written as #s. An
informal treatment of sequences is given in Appendix 3.1 at the end of the text.

An attribute value or simply an attribute is some sequence of bytes':

ATTRIBUTE :: = sequence of BYTES

The values ror different attributes and also the different values for some attri-
butes would not all be encoded using equal-length sequences. We have to specify
the length of the sequence. For attributes that can accept variable-length sequences
as values, we specify the minimum (#min) and maximum (#max) sequence lengths.
Fixed-length values have #min = #max. Thus we have:

ATTRIBUTE :: = sequence of BYTES of length (#min . . #max)

A record is defined in terms of some bag of attribute values. Physically a record
is defined as:

RECORD :: = sequence of BYTES
Hawever, logically we think of a record as:
RECORD :: = sequence of ATTRIBUTES

Records are stored on the physical medium in blocks. For simplicity we assume
fixed-length blocks. Then we have:

FL_BLOCK :: = array [1 . . BLOCK_SIZE] of BYTES
FL_BLOCK :: = sequence of RECORD

The first definition pertains to physical blocks and the second to logical blocks. The
first definition allows a logical record to span ovér physical blocks.
Similarly, we define the file:

FILE :: = sequence of FL_BLOCK

(Note that from the definition of FL_BLOCK, we may physically consider a file to
be just a sequence of BYTES, or logically as a sequence of RECORD.) -

The emphasis on *‘sequence of BYTES’ is deliberate, for this precisely repre-
sents the fact that all data is stored in the form of bytes (or bits). This is important,
too, for if we have a sequence and we wish to map it into a given logical structure,
we should know (1) the beginning point of the sequence and (2) a definition of the
logical structure into sequences of bytes. This has implications for searching without
transferring data between the secondary mecium and main memory. A processing
element associated with the read/write head of a storage device can decide that it has
located some desired sequence only if it knows the starting point. These are encoded
or physically embedded in actual storage devices.

Note that some attributes are Boolean and need less thin one byte; however, many implementations use an entire byte to
tore a single Boolean valued attribute.

3.1 Introduction 83

Algorithm
3.1

Input:

Output:

A number of initialization operations must be performed by the file manager
before the initial access is made to a file. This is usually done by issuing an open
file (or in Pascal, a reset/rewrite command). This initiates some internal housekeep-
ing by the file manager. The creation of a number of buffers of appropriate size and
initializing pointers (one each for blocks and records within blocks) would be nec-
essary. We shall name these pointers BLOCK_PTR and RECORD_PTR, respec-
tively.

Assume that we have issued an open command for spme file; then we can as-
sume that BLOCK_PTR=1 and RECORD_PTR=1. The number of blocks in the
file is given by #file_block and the number of records in the block BLOCK_PTR is
given by #record(BLOCK_PTR). Algorithm 3.1 for get_record follows. Here we
ensure that we do not attempt to access a record past the last record of a block or
access a block past the last block in the file. Provided that the pointers are correctly
set, the next record is made available. If we had already accessed: the last record in
the block, the block pointer is incremented and the record pointer within the block is
reset to 1. (Note that this algorithm is much more simple than what happens in
reality. First, it is implicit that somehow the data from the secondary storage is
already available. In practice, the blocks would have to be read off the secondary
storage. Second, the sizes (# . . .) are made available from some system record

a8 ~ Chapter3 File Organization

FIRST: F— 1, NEXT: (F,r) = i ifi # n

LAST: F—-r, NEXT: (F,r,) — ERROR (end_of_file)
PREVIOUS: (Fr) =, ifi >'1

PREVIOUS: (F,r;) = ERROR (beginning_of_file)

We sometimes do not require access to every attribute of a record, simply to a
subset. Similarly, we may access only those records that satisfy some given condi-
tion. In general, we can specify access or retrieve operations on a file as:

<target_list | qualification>

where the target_list is the list of attributes for which the values of records satisfying
the specified qualification clause are to be retrieved. The qualification clause is a
Boolean expression, a sequence of terms connected with Boolean operators as de-

fined below:
<qualification> :: = <term> [<Boolean_operator> <qualification>]
<term> ::= [<negation>] <attribute> <relational operator> <constant>
<relational operator> :: = '='|'#'|'">'|'2"|'<'|'s’
<Boolean operator> :: = AND|OR .
<negation> :: = NOT

In principle, we can retrieve records from a file based on the value of any
attribute. However, it is common to retrieve records based on some subset of the
attributes, designated as key attributes. The file is organized so that retrievals based
on these key attributes will be efficient. Remember that certain attributes, primary
keys, may be used to uniquely identify records in a file, while other attributes, sec-
ondary or nonprimary keys, can identify a set of records.

Example 3.3 In Figure 3.6, assume that the names are unique, i.e., the name can be used
to identify a record. As such, name would be the primary key for the GPA
file.

In the Birth_Date file we recorded information about the birth dates of
persons we know. We can assume that the combination of First_Name and
Last_Name uniquely identifies a record, i.e., that every person we know has
a unique name. Suppose that a person’s First_Name and Birth_Date also
uniquely identify a record. In other words, some persons have a common
birth date and a few of the persons have the same first name, but no two
persons with the same first name have the same birth date (at least for
this example). Thus we can assume that either one of the two combinations
<First_Name, Last_Name> or <First_Name, Birth_Date> can be used
as a primary key.

Let us choose the <First_Name, Last_Name> combination as our pri-
mary key. We can choose any. or 2ll of the attributes First_Name, Last_
Name, and Birth_Date as secondary keys. For simplicity, we choose Birth.
Date. Now . since we allow the possibility of more than one person with the
same birth date, we expect to retrieve zero, one, or several records when
we-use Birth_Date to access this file. Accessing the file using the <First_
Name, Last_Name> combination would retrieve at most one record. &

3.1 Introduction 89

The data contained within the file may have to be changed. The changes could
be the addition (or insertion) of new records, the removal (or deletion) of an existing
one, or the changing (or modifying) of some of the contents of an existing one. The
insertion, deletion, .and modification operations are collectively known as update
operations. Update operations can also be expressed in terms of target_list and
qualification_list. The target_list permits assignment statements in the form of attrib-
ute : = expression. Insert operations have an empty qualification clause.

An update is a mapping from one (old) version of a file to another (new) version
of it, i.e., F — F’. Assume that #F_record represents the number of records in the
file F. An update may include any of the following four possible procedures:

U,. Insert records in their proper logical sequence. Let F = {r,, . . . , e y, eaps - - .
and #F_record = n, then

INSERT: (F,) > F
where F' = {r, . . . ,f_y, I, Tyyy, . . .} and #F'_record = n+1.

The operation is accomplished logically by copying records ry, . . .
F’, then storing record r, and copying the remaining records, ry, fy 4,

U,. Delete one or more existing records from the file. Let F = {r,, . .
f+1, - - -} and #F_record = n, then

DELETE : (F,) = F'
where F' = {r,, . . . ,n_y, k41, . . .} and #F _record = n — 1.

The operation is accomplished logically by copying records r; . . . , r,_, into file
F', ignoring record r,, and then copying the remaining records, ry, T4y, . . .
into F'.
U; Modify the data values in some existing record. This is akin to deleting record r;
and inserting r;’, where r;’ is the modified record.

MODIFY: (F,) > F'
LetF = {r., A (TN ST (TIPS TR } and
F' = {l’l, P Yi', oo o s k1 Tko Tkl -+ - }

The operation is accomplished logically by copying records r,, . . . , r;_, into
the file F', modifying record r; to r;’ and copying it to file F’, and then copying the
remaining records, r;,;, . . . into F'. Note that the relative positions of the records
remain unchanged.

U,. Modify the data values in existing records (it is common to assume that the record
length remains the same).

MODIFY: (F, A;, v;, vi') = F'

This modifies data values in all records that have value v; for the attribute A;.
The operation is accomplished logically as follows: Copy a record rj, such that the
value of attribute A; # v;, into the file F’; or modify a record ry, such that the value
of attribute A; = v;, to r," where the value of attribute A; is modified to v;' and copy
the modified record to file F'.

Remember that update operations may also cause exceptions, such as when we
try to delete or modify a nonexistent record. In most applications insertion of a

Chapter 3 File Organization

typically used to maintain records chronologically; one such application is to record
transactions.

Sequential Files

————————

Factors such as seek
based files:

record. In this method, the cylinder on which the required record is stored is located
by a series of decreasing head movements. The search, having been localized to a
cylinder, may require the reading of half the tracks, on average, in the case where
keys are embedded in the physical records, or require only a scan over the tracks in
the case where keys are also stored separately.

Updating usually requires the creation of a new file, To maintain file sequence,
records are copied to the point where amendment is required. The changes are then
made and copied into the new file. Following this, the remaining records in the
original file are copied to the new file. This method of updating a sequential file
creates an automatic backup copy. It permits updates of the type U, through U,.

Addition can be handled in a manner similar to updating. Adding a record ne-
cessitates ‘the shifting of all records from the appropriate point to the end of file to
create space for the new record. Inversely, deletion of a record requires a compres-

sion of the file space, achieved by the shifting of records. Changes to an existing

record may also require shifting if the record size expands or shrinks. ‘
The basic advantage offered by a sequential file is the ease of access to the next

proposition if a new file must be created. To reduce the cost per update, all such
Tequests are batched, sorted in the order of the sequential file, and then used to
update the sequential file in a single pass. Such a file, containing the updates to be
made to a sequential file, is sometimes referred to as a transaction file,

In the batched mode of updating, a transaction file of update records is made
and then sorted in the sequence of the sequential file. The update process requires
the examination of.each individual record in the original sequential file (the old mas-
ter file). Records requiring no changes are copied directly to a new file (the new

and latency time rule out the use of binary search in favor of some. form of indexing scheme for disk-

3.4 Index-Sequential Film 93

Figure 3.8

A file with empty spaces for record insertions-(the figure shows some fixed-length
records and unused space).

3.4

R, Ry Rs Ry

Block, Block, Block;

master file); records requiring one or more changes are written into the new master
file only after all necessary changes have been made. Insertions of new records are
made in the proper sequence: They are written into the new master file at the appro-
priate place. Records to be deleted are not copied to the new master file. A big

~ advantage of this method of update is the creation of an automatic backup copy. The

new master file can always be recreated by processing the old master file and the
transaction file. -

A possible method of reducing the creation of a new file at each update run is
to create the original file with *‘holes’” (space left for the addition of new records,
as shown in Figure 3.8). As such, if a block could hold k records, then at initial
creation it is made to contain only L * k records, where 0 <L =1 is known as the
loading factor. Additional space may also be earmarked for records that may ‘‘over-
flow’’ their blocks, e.g., If the record r; logically belongs to block B; but the physical
block B; does not contain the requisite free space. This additional free space is known
as the overflow area. A similar technique is employed in index-sequential files.

index-Sequential Files

The retrieval of a record from a sequential file, on average, requires access to half
the records in the file, making such enquiries not only inefficient but very time con-
suming for large files. To improve the query response time of a sequential file, a
type of indexing technique can be added.

An index is a set of <key, address> pairs. Indexing associates a set of objects
to a set of orderable quantities, which are usually smaller in number or their proper-
ties provide a mechanism for faster search. The purpose of indexing is to expedite
the search process. Indexes created from a sequential (or sorted) set of primary keys
are referred to as index sequential. Although the indices and the data blocks are held
together physically, we distinguish between them logically. We shall use the term
index file to describe the indexes and data file to refer to the data records. The index
is usually small enough to be read into the processor memory. :

A sequential (or sorted on primary keys) file that is indexed is called an index-
sequential file. The index provides for random access to records, while the sequential
nature of the file provides casy access to the subsequent records as well as sequential
processing. An additional feature of this file system is the overflow area. This feature
provides additional space for record addition without necessitating the creation of a
new file.

Chapter 3 File Organization

If the group corresponding .o the first index key greater than K, is, let us-say,
G;, then the logical position of record corresponding to the key K, is in group G;.
This is because K is greater than the largest key in group G,_, but smaller than or
equal to the largest key in group G.. The key K, is then compared to the keys in the
group G; to find a match.

This search procedure based on a set of ordered indexes, (tne largest keys or
different groups of sorted kevs) is called an index-sequential search. It is shown in
Algorithm 3.2.

In Algorithm 3.2 we assume that the index is available in memory ana the
entries are INDEXKEY and ADDRESS. This first entry in the index gives us the
first sequential index key value and the location address of the associated block. We
compare the given search key value with that of successive index key value entries
until we get to the desired entry. This would be a block suitable for holding a record
with the search key value. LOCATION returns the address of the block to which the
record corresponding to SEARCHKEY belongs (logically).

In some systems, instead of the largest keys of the different groups being main-
tained in the sequential index, the smallest keys are kept. This requires that the key
K, be compared with the group keys until the group with the key G; > K, is located.
Then K, may be contained in the preceding group, G;_.

~ . Number of Comparisons

Algorithm
3.2

Input:
Output:

Assume that the groups are of thz same size, i.e., s, =s, = . . . = s, = s. Then
the number of records n = m*s where there are m groups. In every group, more

than one key value may exist; therefore, when searching for a record with a given

key value, we have to check this key value against those of the records in the group.
The number of comparisons associated with index-sequential search for different keys
is presented in Figure 3.11. Part a of the figure shows the index and the number of

3.4 - Index-Sequential Film 97

R

Figure 3.11 Index key comparisons.

Address Number of Block at Record Number of
Index of Block Comparisons Address Key Comparisons
K A, 1 A K| i 2
Ko, A, 2 K 2 3
. . . K, s (s+1)
Ka An m A, Ks+1 1 3
Ks +2 2 (4)
An . . .
K, s (s+m)
(@ ()

comparisons required to sequentially search for a key in the index. Part b indicates
the block structure and the number of comparisons required for the sequential search
for a record with a given key. The total number of comparisons made in searching

for.a key is the sum of the comparisons for the index and the black, given withip—
parentheses in Figure 3.11b. : of P.4.
o

For key K; the total number of comparisons is given by:

w
fifs] + i — Hmods + 1 57'
]
and the average number of comparisons is given by \‘;
1+ (m +)2 &

Example 3.5 Assume a file of 10,000 records distributed over 100 blocks, i.e., every
block has 100 records. Also assume that every record is equally likely to be
accessed. In trying to locate a particular record, we first examine the index,
which is assumed to be within a single block. To locate the block containing
the required record, we have to examine each index entry. The number of
comparisons required are:

Search fof # Comparisons
First entry 1
Second entry 2
Third entry 3

99th entry 99

100th entry 100

Chapter 3 File Organization

The total number of comparisons made is 100 * (101)/2 = 5050 and the
average number of comparisons per access is 50.5. By similar reasoning,
we know that the average number of comparisons required for the actual
record from the data block (it also contains 100 entries) is also 50.5.
Therefore, the average number of comparisons required is 101. This value
agrees with the value calculated using the expression 1 + (m + s)/2,
since in our example the block size, s, is 100 and the number of blocks,
m. is100. W

It is normal to orgamze a file with several logical records per track (we can even
consider a lower division of a track into a number of sectors and assign several
logical records per sector). If the records are held in key sequence, it is sufficient to
index only the highest record key within each track (or sector). The index entries,
then, consist of <track number, highest key in track> pairs. A record (with a given
search key) is located by reading the index into main memory and comparing its key
with the index entries to locate the track. The record is then searched for within the
track.

At the beginning of this chapter we abstracted a disk as a two dimensional array
with tracks and blocks (sectors). Instead of labeling all the tracks uniquely, we can
group them in sets. One such grouping is formed around cylinders. Let ¢ be the
number of cylinders on which n records are organized in an indexed sequential or-
ganization. Each cylinder contains m tracks for storing records and each track con-
tains s records. Let us also assume that n = cms. Assuming that access to all records
is equally likely, the average number of comparisons is given by (¢ + m + s
+ 3)2.

Example 3.6 Assume that a file occupies 100 cylinders of 20 fracks each. Each track

holds 20 records. Then the average number of comparisons to locate a given
record is (100 + 20 + 20 + 3)2 = 71.5. m

The above expressions are for average number of comparisons. They do not
indicate the number of disk accesses made in the retrieval of a record. Expressions
for disk accesses are given in Section 3.4.4.

Multilevel Indexing Schemes: Basic Technique

3.4.3

In a full indexing scheme, the address of every record is maintained in the index.
For a small file, this index would be small and can be processed very efficiently in
main memory. For a large file, the index’s size would pose problems. It is possible
to create a hierarchy of indexes with the lowest level index pointing to the records,
while the higher level indexes point to the indexes below them (Figure 3.12). The
higher level indices are small and can be moved to main memory, allowing the
search to be localized to one of the larger lower level indices.

3.4 Index-Sequential Film 99

Figure 3.12

L

Hierarchy of indexes.

Pointer Pointer
to next to next Pointer
Key level Key level Key to
index index record
1T 122 131
—»| 200 }21 ——| 60 | Bl |—| 10 | pil
450 | 122 9| B2 29 | p12
7801 123 150§ - 50 -}
1000 | 124 1 200 60

Key Pointer
to next
level index

1000 | 111 |—

2100 112 _L

1)

9999’ Iln

s BT —

LIRSCIE

Intermediate Lowest
level indexes level index

The lowest level index consists of the <key, address> pair for-each record in
the file; this is costly in terms of space. Updates of records require changes to the
index file as well as the data file. Insertion of a record requires that its <key, ad-
dress> pair be inserted in the index at the correct point, while deletion of a record
requires that the <key, address> pair be removed from the index. Therefore, main-
tenance of the index is also expensive. In the simplest case, updates. of variable
length records require that changes be made to the address field of the record entry.
In a variation of this scheme, the address value in the lowest level index entry points
to a block of records and the key value represents the highest key value of records
in-this block. Another variation of this scheme is described in the next section..

100

3.4.4

Chapter 3 File Organization

Structure of Index Sequential Files

An index-sequential file consists of the data plus one or more levels of indexes.
When inserting a record, we have to maintain the sequence of records and this may
necessitatc shifting subsequent records. For a large file this is a costly and inefficient
process. Instead, the records that overflow their logical area are shifted into a desig-
nated overflow area and a pointer is provided in the logical area or associated index
entry points to the overflow location. This is illustrated below. Record 615 is inserted
in the original logical block causing a record to be moved to an overflow block.

| 611612614618} 624 |
Original logical block

[ouieniouiasion|—»lea]

Original logical block Overflow block

Multiple records belonging to the same logical area may be chained to maintain
logical sequencing. When records are forced into the overflow areas as a result of
insertion, the insertion process is simplified, but the search time is increased. Dele-
tion of records from index-sequential files creates logical gaps; the records are not
physically removed but only flagged as having been deleted. If there were a number

.of deletions, we may have a great amount of unused space.

An index-sequential file is therefore made up of the following components:

1. A primary data storage area. In certain systems this area may have unused
spaces embedded within it to permit addition of records. It may also include
records that have been marked as having been deleted.

4. Overflow area(s). This permits the addition of records to the files. A number of
schemes exist for the incorporation of records in these areas into the expected
logical sequence.

3. A hierarchy of indices. In a random enquiry or update, the physical location of
the desired record is obtained by accessing these indices.

The primary data area contains the records written by the users’ programs. The
records are written in uata blocks in ascending key sequence. These data blocks are
in turn stored in ascending sequence in the primary data area. The data blocks are
sequenced by the highest key of the logical records contained in them.

When using a disk device to store the index-sequential files, the data is stored
on the cylinders, each of which is made up of a number of tracks. Some of these
tracks are reserved for a prime data area and others are used for an overflow area

-associated with the prime data area on the cylinder.

A track index is written and maintained by the file system. Each cylinder of |
the index-sequential file has its own track index. The track index contains an entry
for each prime data track in the cylinder as well as an entry to indicate if any records
have overflowed from the track. Each prime track may be considered as a logical
block.

‘Each track index entry is made up of the following items:

